Solution
(a) The mole fraction of ethylene glycol may be computed by first deriving molar amounts of both solution components and then substituting these amounts into the unit definition.
Notice that mole fraction is a dimensionless property, being the ratio of properties with identical units (moles).
(b) To find molality, we need to know the moles of the solute and the mass of the solvent (in kg).
First, use the given mass of ethylene glycol and its molar mass to find the moles of solute:
Then, convert the mass of the water from grams to kilograms:
Finally, calculate molarity per its definition:
Check Your Learning
What are the mole fraction and molality of a solution that contains 0.850 g of ammonia, NH3, dissolved in 125 g of water?
7.14 × 10−3; 0.399 m
2.
Converting Mole Fraction and Molal Concentrations
Calculate the mole fraction of solute and solvent in a 3.0 m solution of sodium chloride.
Solution
Converting from one concentration unit to another is accomplished by first comparing the two unit definitions. In this case, both units have the same numerator (moles of solute) but different denominators. The provided molal concentration may be written as:
The numerator for this solution’s mole fraction is, therefore, 3.0 mol NaCl. The denominator may be computed by deriving the molar amount of water corresponding to 1.0 kg
and then substituting these molar amounts into the definition for mole fraction.
Check Your Learning
The mole fraction of iodine, I2, dissolved in dichloromethane, CH2Cl2, is 0.115. What is the molal concentration, m, of iodine in this solution?
1.50 m
3.
Calculation of a Vapor Pressure
Compute the vapor pressure of an ideal solution containing 92.1 g of glycerin, C3H5(OH)3, and 184.4 g of ethanol, C2H5OH, at 40 °C. The vapor pressure of pure ethanol is 0.178 atm at 40 °C. Glycerin is essentially nonvolatile at this temperature.
Solution
Since the solvent is the only volatile component of this solution, its vapor pressure may be computed per Raoult’s law as:
First, calculate the molar amounts of each solution component using the provided mass data.
Next, calculate the mole fraction of the solvent (ethanol) and use Raoult’s law to compute the solution’s vapor pressure.
Check Your Learning
A solution contains 5.00 g of urea, CO(NH2)2 (a nonvolatile solute) and 0.100 kg of water. If the vapor pressure of pure water at 25 °C is 23.7 torr, what is the vapor pressure of the solution?
23.4 torr
4.
Calculating the Boiling Point of a Solution
What is the boiling point of a 0.33 m solution of a nonvolatile solute in benzene?
Solution
Use the equation relating boiling point elevation to solute molality to solve this problem in two steps.
Check Your Learning
What is the boiling point of the antifreeze described in Example 1?
109.2 °C
5.
The Boiling Point of an Iodine Solution
Find the boiling point of a solution of 92.1 g of iodine, I2, in 800.0 g of chloroform, CHCl3, assuming that the iodine is nonvolatile and that the solution is ideal.
Solution
We can solve this problem using four steps.
Check Your Learning
What is the boiling point of a solution of 1.0 g of glycerin, C3H5(OH)3, in 47.8 g of water? Assume an ideal solution.
100.12 °C
6.
Calculation of the Freezing Point of a Solution
What is the freezing point of the 0.33 m solution of a nonvolatile nonelectrolyte solute in benzene described in Example 2?
Solution
Use the equation relating freezing point depression to solute molality to solve this problem in two steps.
Check Your Learning
What is the freezing point of a 1.85 m solution of a nonvolatile nonelectrolyte solute in nitrobenzene?
−9.3 °C
7.
Calculation of Osmotic Pressure
What is the osmotic pressure (atm) of a 0.30 M solution of glucose in water that is used for intravenous infusion at body temperature, 37 °C?
Solution
We can find the osmotic pressure, Π, using the formula Π = MRT, where T is on the Kelvin scale (310 K) and the value of R is expressed in appropriate units (0.08206 L atm/mol K).
Check Your Learning
What is the osmotic pressure (atm) a solution with a volume of 0.750 L that contains 5.0 g of methanol, CH3OH, in water at 37 °C?
5.3 atm
8.
Check Your Learning
A solution of 35.7 g of a nonelectrolyte in 220.0 g of chloroform has a boiling point of 64.5 °C. What is the molar mass of this compound?
1.8 × 102 g/mol
9.
Determination of a Molar Mass from Osmotic Pressure
A 0.500 L sample of an aqueous solution containing 10.0 g of hemoglobin has an osmotic pressure of 5.9 torr at 22 °C. What is the molar mass of hemoglobin?
Solution
Here is one set of steps that can be used to solve the problem:
Check Your Learning
What is the molar mass of a protein if a solution of 0.02 g of the protein in 25.0 mL of solution has an osmotic pressure of 0.56 torr at 25 °C?
2.7 × 104 g/mol
10.
The Freezing Point of a Solution of an Electrolyte
The concentration of ions in seawater is approximately the same as that in a solution containing 4.2 g of NaCl dissolved in 125 g of water. Assume that each of the ions in the NaCl solution has the same effect on the freezing point of water as a nonelectrolyte molecule, and determine the freezing temperature the solution (which is approximately equal to the freezing temperature of seawater).
Solution
We can solve this problem using the following series of steps.
Check Your Learning
Assume that each of the ions in calcium chloride, CaCl2, has the same effect on the freezing point of water as a nonelectrolyte molecule. Calculate the freezing point of a solution of 0.724 g of CaCl2 in 175 g of water.
−0.208 °C
OTHER QUESTIONS
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) 583 g of H2SO4 in 1.50 kg of water—the acid solution used in an automobile battery
(b) 0.86 g of NaCl in 1.00 × 102 g of water—a solution of sodium chloride for intravenous injection
(c) 46.85 g of codeine, C18H21NO3, in 125.5 g of ethanol, C2H5OH
(d) 25 g of I2 in 125 g of ethanol, C2H5OH
(a) 0.710 kg of sodium carbonate (washing soda), Na2CO3, in 10.0 kg of water—a saturated solution at 0 °C
(b) 125 g of NH4NO3 in 275 g of water—a mixture used to make an instant ice pack
(c) 25 g of Cl2 in 125 g of dichloromethane, CH2Cl2
(d) 0.372 g of histamine, C5H9N, in 125 g of chloroform, CHCl3
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) 583 g of H2SO4 in 1.50 kg of water—the acid solution used in an automobile battery
(b) 0.86 g of NaCl in 1.00 × 102 g of water—a solution of sodium chloride for intravenous injection
(c) 46.85 g of codeine, C18H21NO3, in 125.5 g of ethanol, C2H5OH
(d) 25 g of I2 in 125 g of ethanol, C2H5OH
(a) 0.710 kg of sodium carbonate (washing soda), Na2CO3, in 10.0 kg of water—a saturated solution at 0°C
(b) 125 g of NH4NO3 in 275 g of water—a mixture used to make an instant ice pack
(c) 25 g of Cl2 in 125 g of dichloromethane, CH2Cl2
(d) 0.372 g of histamine, C5H9N, in 125 g of chloroform, CHCl3
(a) Outline the steps necessary to answer the question
(b) Answer the question
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) Outline the steps necessary to answer the following question.
(b) Answer the question.
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) Outline the steps necessary to answer the question.
(b) Answer the question.
(a) Outline the steps necessary to answer the question.
(b) Solve the problem.
(a) Calculate the mole fraction of methanol and of ethanol in a solution of 50.0 g of methanol and 50.0 g of ethanol.
(b) Ethanol and methanol form a solution that behaves like an ideal solution. Calculate the vapor pressure of methanol and of ethanol above the solution at 20 °C.
(c) Calculate the mole fraction of methanol and of ethanol in the vapor above the solution.
2. The strength of the bonds between like molecules is stronger than the strength between unlike molecules. Therefore, some regions will exist in which the water molecules will exclude oil molecules and other regions will exist in which oil molecules will exclude water molecules, forming a heterogeneous region.
4. Both form homogeneous solutions; their boiling point elevations are the same, as are their lowering of vapor pressures. Osmotic pressure and the lowering of the freezing point are also the same for both solutions.
6. (a) Find number of moles of HNO3 and H2O in 100 g of the solution. Find the mole fractions for the components.
(b) The mole fraction of HNO3 is 0.378. The mole fraction of H2O is 0.622.
8. (a)
10. In a 1 M solution, the mole is contained in exactly 1 L of solution. In a 1 m solution, the mole is contained in exactly 1 kg of solvent.
12. (a) Determine the molar mass of HNO3. Determine the number of moles of acid in the solution. From the number of moles and the mass of solvent, determine the molality. (b) 33.7 m
14. (a) 6.70 × 10−1m; (b) 5.67 m; (c) 2.8 m; (d) 0.0358 m
16. 1.08 m
18. (a) Determine the molar mass of sucrose; determine the number of moles of sucrose in the solution; convert the mass of solvent to units of kilograms; from the number of moles and the mass of solvent, determine the molality; determine the difference between the boiling point of water and the boiling point of the solution; determine the new boiling point. (b) 100.5 °C
20. (a) Determine the molar mass of sucrose; determine the number of moles of sucrose in the solution; convert the mass of solvent to units of kilograms; from the number of moles and the mass of solvent, determine the molality; determine the difference between the freezing temperature of water and the freezing temperature of the solution; determine the new freezing temperature. (b) −1.8 °C
22. (a) Determine the molar mass of Ca(NO3)2; determine the number of moles of Ca(NO3)2 in the solution; determine the number of moles of ions in the solution; determine the molarity of ions, then the osmotic pressure. (b) 2.67 atm
24. (a) Determine the molal concentration from the change in boiling point and Kb; determine the moles of solute in the solution from the molal concentration and mass of solvent; determine the molar mass from the number of moles and the mass of solute. (b) 2.1 × 102 g mol−1
26. No. Pure benzene freezes at 5.5 °C, and so the observed freezing point of this solution is depressed by ΔTf = 5.5 − 0.4 = 5.1 °C. The value computed, assuming no ionization of HCl, is ΔTf = (1.0 m)(5.14 °C/m) = 5.1 °C. Agreement of these values supports the assumption that HCl is not ionized.
28. 144 g mol−1
30. 0.870 °C
32. S8
34. 1.39 × 104 g mol−1
36. 54 g
38. 100.26 °C
40. (a)
42. The ions and compounds present in the water in the beef lower the freezing point of the beef below −1 °C.
44.
The observed change equals the theoretical change; therefore, no dissociation occurs.
4(a) what are your roles as citizen of Uganda? (b) Each and every individual in…
3(a) why do we political Eduction in the New Uganda curriculum? (b) Explain the roles…
2(a) Describe the creation story in relation to the origin of man. (b) Explain why…
Leave a Comment