To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
The technical storage or access that is used exclusively for statistical purposes.
The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
VECTORS AND TRANSLATIONS
Vectors
This is a vector:
A vector has magnitude (size) and direction:
The length of the line shows its magnitude and the arrowhead points in the direction.
We can add two vectors by joining them head-to-tail:
And it doesn’t matter which order we add them, we get the same result:
Example: A plane is flying along, pointing North, but there is a wind coming from the North-West.
The two vectors (the velocity caused by the propeller, and the velocity of the wind) result in a slightly slower ground speed heading a little East of North.
If you watched the plane from the ground it would seem to be slipping sideways a little.
Have you ever seen that happen? Maybe you have seen birds struggling against a strong wind that seem to fly sideways. Vectors help explain that.
Velocity, acceleration, force and many other things are vectors.
Subtracting
We can also subtract one vector from another:
a − b
Notation
A vector is often written in bold, like a or b.
of its head and tail with an arrow above it, like this:
Calculations
Now … how do we do the calculations?
The most common way is to first break up vectors into x and y parts, like this:
The vector a is broken up into
the two vectors ax and ay
(We see later how to do this.)
Adding Vectors
We can then add vectors by adding the x parts and adding the y parts:
The vector (8, 13) and the vector (26, 7) add up to the vector (34, 20)
Example: add the vectors a = (8, 13) and b = (26, 7)
c = a + b
c = (8, 13) + (26, 7) = (8+26, 13+7) = (34, 20)
When we break up a vector like that, each part is called a component:
Subtracting Vectors
To subtract, first reverse the vector we want to subtract, then add.
Example: subtract k = (4, 5) from v = (12, 2)
a = v + −k
a = (12, 2) + −(4, 5) = (12, 2) + (−4, −5) = (12−4, 2−5) = (8, −3)
The magnitude of a Vector
The magnitude of a vector is shown by two vertical bars on either side of the vector:
|a|
OR it can be written with double vertical bars (so as not to confuse it with absolute value):
||a||
We use Pythagoras’ theorem to calculate it:
|a| = √( x2 + y2 )
Example: what is the magnitude of the vector b = (6, 8) ?
|b| = √( 62 + 82) = √( 36+64) = √100 = 10
A vector with magnitude 1 is called a Unit Vector.
Vector vs Scalar
A scalar has magnitude (size) only.
Scalar: just a number (like 7 or −0.32) … definitely not a vector.
A vector has magnitude and direction, and is often written in bold, so we know it is not a scalar:
Example: kb is actually the scalar k times the vector b.
Multiplying a Vector by a Scalar
When we multiply a vector by a scalar it is called “scaling” a vector, because we change how big or small the vector is.
Example: multiply the vector m = (7, 3) by the scalar 3
It still points in the same direction, but is 3 times longer
(And now you know why numbers are called “scalars”, because they “scale” the vector up or down.)
Example: what is the magnitude of the vector w = (1, −2, 3) ?
|w| = √( 12 + (−2)2 + 32 ) = √( 1+4+9) = √14
Here is an example with 4 dimensions (but it is hard to draw!):
Example: subtract (1, 2, 3, 4) from (3, 3, 3, 3)
(3, 3, 3, 3) + −(1, 2, 3, 4)
= (3, 3, 3, 3) + (−1,−2,−3,−4)
= (3−1, 3−2, 3−3, 3−4)
= (2, 1, 0, −1)
Magnitude and Direction
We may know a vector’s magnitude and direction, but want its x and y lengths (or vice versa):
Coordinates
Coordinates
TRANSLATIONS