To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
The technical storage or access that is used exclusively for statistical purposes.
The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Nuclear Physics
The high energy nuclear physics experimental group at Columbia University is conducting research to study the collisions of relativistic heavy nuclei to understand the properties of nuclear matter at extremely high densities (similar to the center of neutron stars) and very high temperatures (much hotter than at the center of the sun). In fact, the temperatures and densities reached in these collisions are similar to those found in the early universe a few microseconds after the Big Bang.
Atoms are made of a central nucleus with orbiting electrons.
The nucleus is composed of protons and neutrons, and individual protons and neutrons are composed of quarks and gluons which are bound inside these particles (also called hadrons). Quarks are always observed to be bound in hadronic states, and free quarks have never been observed.
However, lattice calculations of Quantum Chromodynamics (QCD) indicate that at high temperature and pressure, the hadrons essentially melt and the quarks and gluons are asymptotically free. The formation and experimental detection of such a state (called the quark-gluon plasma or QGP) is the primary goal of high-energy nuclear physics.
In lower energy nuclear reactions, the nuclei exchange protons and neutrons. But, at highly relativistic energies the nuclei are destroyed leaving a region in space with an extremely large energy density. This region may be characterized as a quark-gluon plasma.
In the hot reaction region, we are looking for a phase transition of nuclear matter as shown in the above phase diagram. Eventually the system expands and cools, thus crossing back over the phase boundary and binding all the quarks and gluons back into hadrons. By studying the final particle yields, we hope to understand the nature of this phase transition. Our current model of the early universe suggest that it cooled through the quark-gluon plasma phase transition a few microseconds after the Big Bang; the aim of relativistic heavy ion physics is to replicate millions of microscopic versions of this transition, and through them learn more about the nature of the transition
(a) For each of the four radioactive decays listed below, write the decay reaction and identify the daughter in the form.
α decay of : Alpha Decay
β– decay of : Beta Decay
β+ decay of: Nuclear Decay
γ decay of : Nuclear Fission
(b) The number of radioactive nuclei present at the start of an experiment is 4.60 × 1015. The number present twenty days later is 8.14 × 1014. What is the half-life (in days) of the nuclei? (Solutions)
Problem 2
nucleus? Use the following masses in atomic mass units (Solutions):
What is the average binding energy per nucleon (in MeV/nucleon) of the
mass of O-16 atom = 15.9949146 u
mp = 1.0072765 u
mn = 1.0086649 u
me = 0.0005486 u
Applets and Animations
Assignment
ASSIGNMENT : QUANTUM THEORY AND ANSWERS MARKS : 14 DURATION : 2 weeks, 1 day