To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
The technical storage or access that is used exclusively for statistical purposes.
The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Normal Distribution
In a normal distribution, data are symmetrically distributed with no skew. Most values cluster around a central region, with values tapering off as they go further away from the center. The measures of central tendency (mean, mode, and median) are exactly the same in a normal distribution.
Data can be “distributed” (spread out) in different ways.
more on the left
Or more on the right
But there are many cases where the data tends to be around a central value with no bias left or right, and it gets close to a “Normal Distribution” like this:
A Normal Distribution
The “Bell Curve” is a Normal Distribution.
And the yellow histogram shows some data that
follows it closely, but not perfectly (which is usual).
because it looks like a bell.
Many things closely follow a Normal Distribution:
We say the data is “normally distributed”:
The Normal Distribution has:
and 50% greater than the mean
Quincunx
Standard Deviations
The Standard Deviation is a measure of how spread out numbers are (read that page for details on how to calculate it).
When we calculate the standard deviation we find that generally:
1 standard deviation of the mean95% of values are within
2 standard deviations of the mean
99.7% of values are within
3 standard deviations of the mean
Example: 95% of students at school are between 1.1m and 1.7m tall.
Assuming this data is normally distributed can you calculate the mean and standard deviation?
The mean is halfway between 1.1m and 1.7m:
Mean = (1.1m + 1.7m) / 2 = 1.4m
95% is 2 standard deviations either side of the mean (a total of 4 standard deviations) so:
And this is the result:

It is good to know the standard deviation, because we can say that any value is:
Standard Scores
The number of standard deviations from the mean is also called the “Standard Score”, “sigma” or “z-score”. Get used to those words!
Example: In that same school one of your friends is 1.85m tall
Your friend’s height has a “z-score” of 3.0
It is also possible to calculate how many standard deviations 1.85 is from the mean
How far is 1.85 from the mean?
It is 1.85 – 1.4 = 0.45m from the mean
How many standard deviations is that? The standard deviation is 0.15m, so:
0.45m / 0.15m = 3 standard deviations
So to convert a value to a Standard Score (“z-score”):
And doing that is called “Standardizing”:
We can take any Normal Distribution and convert it to The Standard Normal Distribution.
Example: Travel Time
A survey of daily travel time had these results (in minutes):
26, 33, 65, 28, 34, 55, 25, 44, 50, 36, 26, 37, 43, 62, 35, 38, 45, 32, 28, 34
The Mean is 38.8 minutes, and the Standard Deviation is 11.4 minutes (you can copy and paste the values into the Standard Deviation Calculator if you want).
Convert the values to z-scores (“standard scores”).
To convert 26:
So 26 is −1.12 Standard Deviations from the Mean
Here are the first three conversions
(z-score)
And here they are graphically:
You can calculate the rest of the z-scores yourself!
The z-score formula that we have been using is:
z = x − μσ
And this is how to use it:
Example: Travel Time (continued)
Here are the first three conversions using the “z-score formula”:
z = x − μσ
(z-score)
The exact calculations we did before, just following the formula.
Why Standardize … ?
It can help us make decisions about our data.
Example: Professor Willoughby is marking a test.
Here are the student’s results (out of 60 points):
20, 15, 26, 32, 18, 28, 35, 14, 26, 22, 17
Most students didn’t even get 30 out of 60, and most will fail.
The test must have been really hard, so the Prof decides to Standardize all the scores and only fail people 1 standard deviation below the mean.
The Mean is 23, and the Standard Deviation is 6.6, and these are the Standard Scores:
-0.45, -1.21, 0.45, 1.36, -0.76, 0.76, 1.82, -1.36, 0.45, -0.15, -0.91
Now only 2 students will fail (the ones lower than −1 standard deviation)
Much fairer!
It also makes life easier because we only need one table (the Standard Normal Distribution Table), rather than doing calculations individually for each value of mean and standard deviation.
In More Detail
Here is the Standard Normal Distribution with percentages for every half of a standard deviation, and cumulative percentages:
Example: Your score in a recent test was 0.5 standard deviations above the average, how many people scored lower than you did?
So the total less than you is:
50% + 19.1% = 69.1%
In theory 69.1% scored less than you did (but with real data the percentage may be different)
A Practical Example: Your company packages sugar in 1 kg bags.
When you weigh a sample of bags you get these results:
Some values are less than 1000g … can you fix that?
The normal distribution of your measurements looks like this:
31% of the bags are less than 1000g,
which is cheating the customer!
It is a random thing, so we can’t stop bags having less than 1000g, but we can try to reduce it a lot.
Let’s adjust the machine so that 1000g is:
So let us adjust the machine to have 1000g at −2.5 standard deviations from the mean.
Now, we can adjust it to:
Let us try both.
Adjust the mean amount in each bag
The standard deviation is 20g, and we need 2.5 of them:
2.5 × 20g = 50g
So the machine should average 1050g, like this:
Adjust the accuracy of the machine
Or we can keep the same mean (of 1010g), but then we need 2.5 standard deviations to be equal to 10g:
10g / 2.5 = 4g
So the standard deviation should be 4g, like this:
(We hope the machine is that accurate!)
Or perhaps we could have some combination of better accuracy and slightly larger average size, I will leave that up to you!
Video Tutorial
Assignment
ASSIGNMENT : SUBMATH: Normal Distribution Assignment MARKS : 50 DURATION : 1 week, 3 days